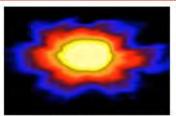


Homeland Defense

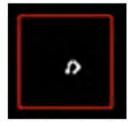
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

To: 2014 Space And Missile Defense Conference

By: VADM J. D. Syring, USN Director Missile Defense Agency August 13, 2014

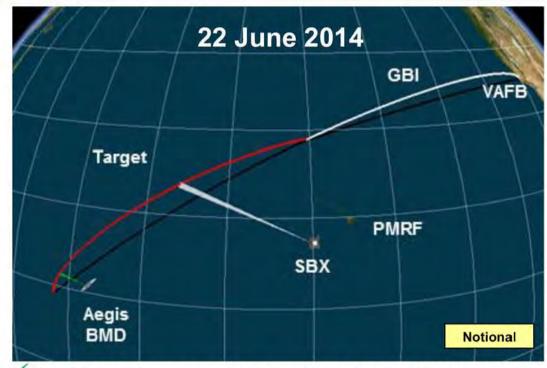


FTG-06b Video


FTG-06b Mission Overview

- Successful Intercept -

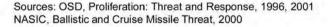
Intercept



Exo-atmospheric Kill Vehicle Target Scene

GBI Launch from Vandenberg AFB

- ✓ Capability Enhancement-II , Exo-atmospheric Kill Vehicle Intercepted a long-range target
- ✓ USS Hopper (Aegis BMD ship) acquired the target and sent track data to the Command, Control, Battle Management, and Communications (C2BMC) system
- ✓ C2BMC forwarded Aegis BMD track data to GMD Fire Control
- ✓ Sea-Based X-band Radar provided track data on the target complex to the GFC


Agenda

- Program history
- Ground-based Midcourse Defense program achievements
- Testing
- · Vision for the future
- Criticisms and responses

North Korea Taepo Dong-1 Launch 31 August 1998

- TD-1 SLV launch demonstrated key technologies needed to develop an ICBM
 - Stage separation
 - A 3-stage SLV could deliver light payload to the United States
 - 3rd stage failed to place a satellite in orbit
- 3rd stage was unanticipated
- US Intelligence had been reporting on the TD-1
 - Timing of the launch was a surprise
- Affirmed 1998 Rumsfeld Commission Findings
- Led to revitalization of National Missile Defense program

Recent Ballistic Missile Developments

"If the US imperialists threaten our sovereignty and survival... our troops will fire our nuclear-armed rockets at the White House and the Pentagon, the sources of all evil,"

--North Korean Vice Marshal Hwang Pyong-So, 28 July 2014

"Persistent spoilers. One of them is North Korea. North Korea fired off another missile, another ballistic missile today. North Korea is -- has been in the process of firing off these missiles, been in the media, and they are essentially desensitizing us because they want to know or they want us to know that they have this capability. But that is a -- that is clearly a spoiler."

-- LTG Michael Flynn, Director, DIA

Iran claimed ... to have test fired two homemade missiles, including "a laser-guided surface-to-surface and air-to-surface missile and a new generation of long-range ballistic missiles carrying Multiple Reentry Vehicle payloads," according to Fars.

--http://missilethreat.com/iran-ballistic-missile-test-a-firm-response-to-u-s/

Historical Slide – July 2001

SUMMARY OF BALLISTIC MISSILE DEFENSE RDT&E PROGRAM

- Aggressive RDT&E Program
 - Without Commitment To A Single Architecture
 - With No Procurement Until Ready
 - Employs Parallel Risk Reduction Paths To Mitigate Potential Cost/Schedule/Performance Problems
 - Capabilities Based Vs. Requirements Based
 - Robust Testing
- Multilayer, Multi-faceted Development Program
 - Protect U.S., Allies, Friends And Deployed Forces
 - Managed As One System
 - Explores Air, Sea, Ground and Space Concepts
 - Designed To Intercept Any Range Of Threat
 - Designed To Intercept Threat In Boost, Midcourse, Terminal Phase
- Structured To Permit Test Asset For Operational Use On An Interim

 Basis, If Directed

 Approved for Public Release

Historical Slide – December 2001

DIRECTION TO THE MISSILE DEFENSE AGENCY

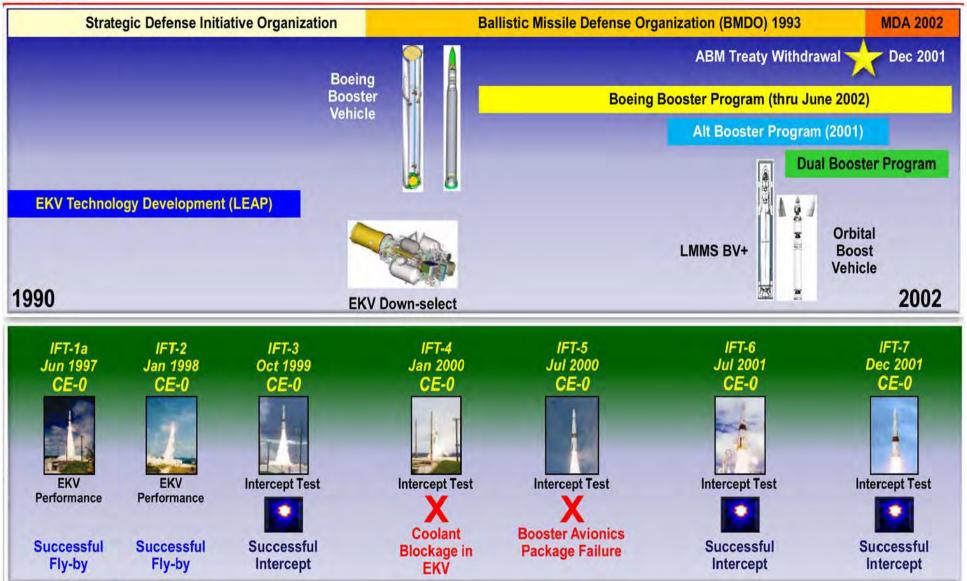
- Rapidly Capitalize On Promising Concepts And Promptly Adjust Program Priorities By Ensuring Rapid Decision Making Cycle Times
- Streamline Executive Oversight And Executive Reporting Requirements
- Management Of BMDS Elements in Three Phases (Development, Transition, Procurement and Operations)
- Single Development Program For All Work
- Improve BMDS System Through Incremental Improvements
- Ensure International Cooperation Remains Key Long-term Component
- Tailor DoD Planning, Programming And Budget System To Be Consistent
 With New SECDEF Direction

 Approved for Public Release

Historical Slide – December 2002

National Security Presidential Directive-23 – 16 DEC 2002

"... The United States plans to begin deployment of a set of missile defense capabilities in 2004. These capabilities will serve as a starting point for fielding improved and expanded capabilities later."

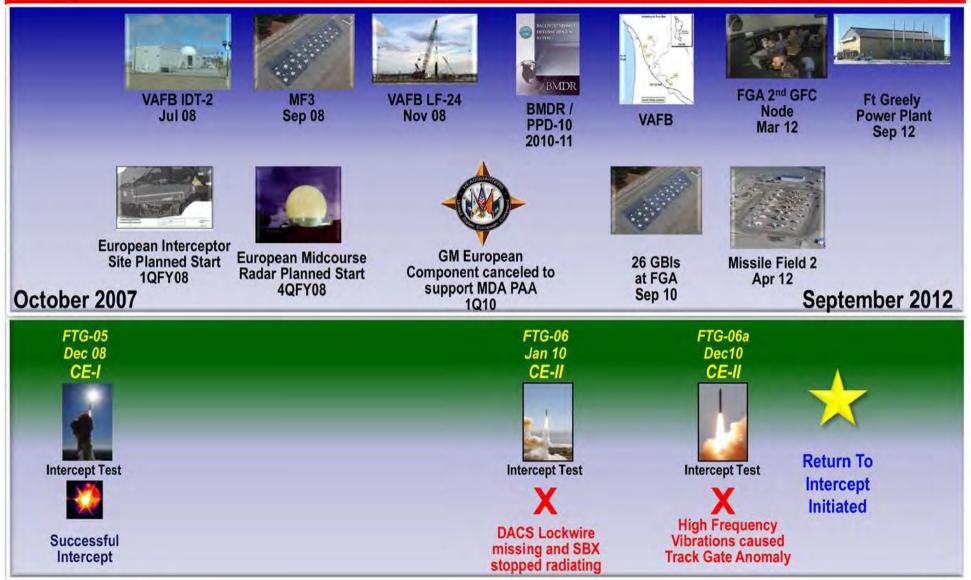

"... will not have a final, fixed missile defense architecture...Rather, we will deploy...initial capabilities that will evolve...2004 and 2005 will include ground-based interceptors, sea-based interceptors, additional Patriot (PAC-3) units, and sensors on land, at sea and in space."

"... Missile defense cooperation will be a feature of U.S. relations with close, long-standing allies... protecting not only the United States and our deployed forces, but also friends and allies;..."

"Recognizing the evolutionary nature of our missile defense program, the Secretary of Defense, as appropriate, shall update me and propose changes."

GMD Program History 1990-2002

GMD Program History 2002-2004


GMD Program History 2004-2007

GMD Program History 2007-2012

GMD Program History 2013-Today

Add 14 Ground-based Interceptors at **Fort Greely**

Refurbish Missile Field 1 Harden 6 Silos

SECDEF Announcement March 2013

Upgraded Inertial Measurement Unit

New Servers and Improved Software Capability

Booster Avionics Upgrades

2014

2nd AN/TPY-2 Radar, Japan (end 2014)

Present

2013

CTV-01 Jan 2013 CE-II

EKV Characterization Test

Successful Flight Test

FTG-07 Jul 2013 CE-I

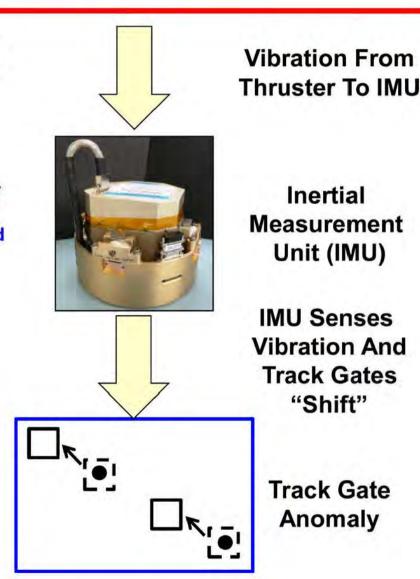
Intercept Test

EKV battery

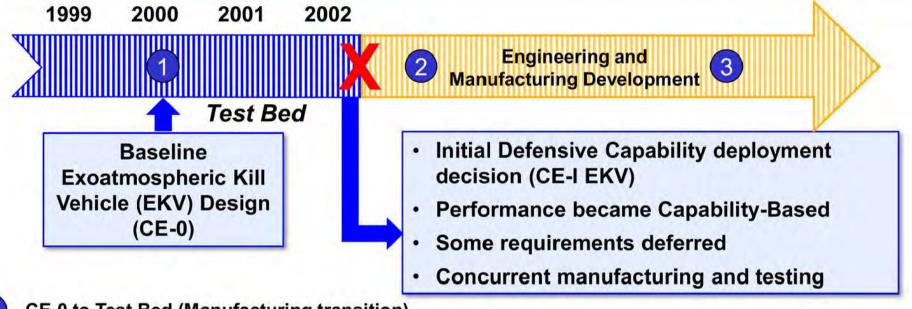
FTG-06b Jun 2014 CE-II

Intercept Test

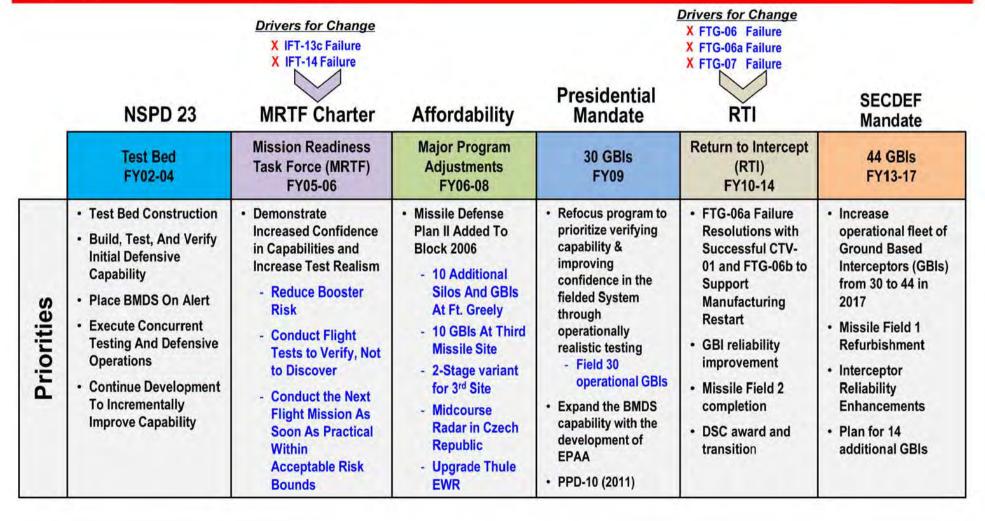
Successful Intercept


GMD Flight Test Failures

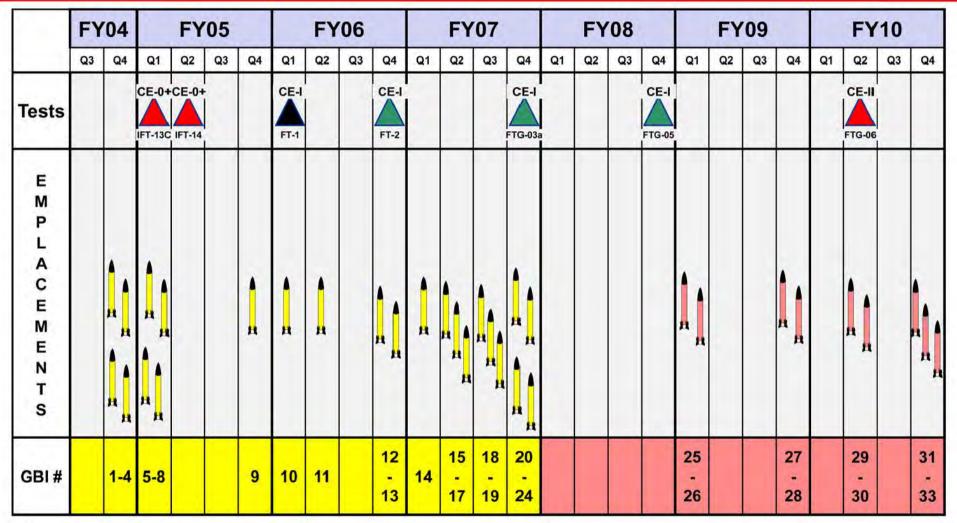
Flight Test	Date	EKV	Failure	Cause
IFT-4	JAN 2000	CE-0	Seeker Anomaly	Coolant blockage
IFT-5	JUL 2000	CE-0	No booster/EKV separation	Surrogate booster data bus failure
IFT-10	DEC 2002	CE-0	No booster/EKV separation	Failure in Laser Firing Unit
IFT-13c	DEC 2004	CE-0+	GBI Aborted Launch	OBV booster BIT failure (software error)
IFT-14	FEB 2005	CE-0+	GBI Aborted Launch	Rusted release arm
FTG-06	JAN 2010	CE-II	Guidance error	Missing DACS lockwire and SBX stopped providing data earlier than planned
FTG-06a	DEC 2010	CE-II	Guidance error	High frequency vibrations caused track gate anomaly
FTG-07	JUL 2013	CE-I	No booster/EKV separation	EKV battery


Track Gate Anomaly (TGA)

- Track Gate Anomaly (Pointing Error) Has Been A Long Historical Issue
 - First observed in 2001 during IFT-6
 - Observed in 8 flight tests over 9 years
- Complex Issue, Difficult to Diagnose and Correct
 - Initial Assessment from 2001 to 2005 Caused by electromagnetic interference (EMI)
 - Updated Assessment from 2005 to 2014 Caused by vibrations and IMU sensitivity
- Corrective Actions Implemented Over Time
 - Multiple iterations of software mitigations
 - IMU mounting modification
 - Additional instrumentation
 - Grounding cable changes
 - Divert live fire testing
 - IMU vibration testing
 - Updated IMU firmware
 - Added isolation cradle around IMU
- Resolution successfully demonstrated in FTG-06b


Ground-Based Interceptor Engineering Timeline

- CE-0 to Test Bed (Manufacturing transition)
 - Test Bed Significant change from laboratory build to manufacturing facility welded lines, EU, IMU, and sensor producibility, improved discrimination algorithms, global shielding, new battery, new communications link frequency
- Test Bed to CE-I (Connector Obsolescence) CE-I – minor obsolescence modification when new lot of 15 interceptors placed on contract
- CE-I to CE-II (Processor Obsolescence)
 - CE-II processor obsolescence addressed when new lot of 10 interceptors placed on contract; increases number of objects EKV can track; minor algorithm performance improvements

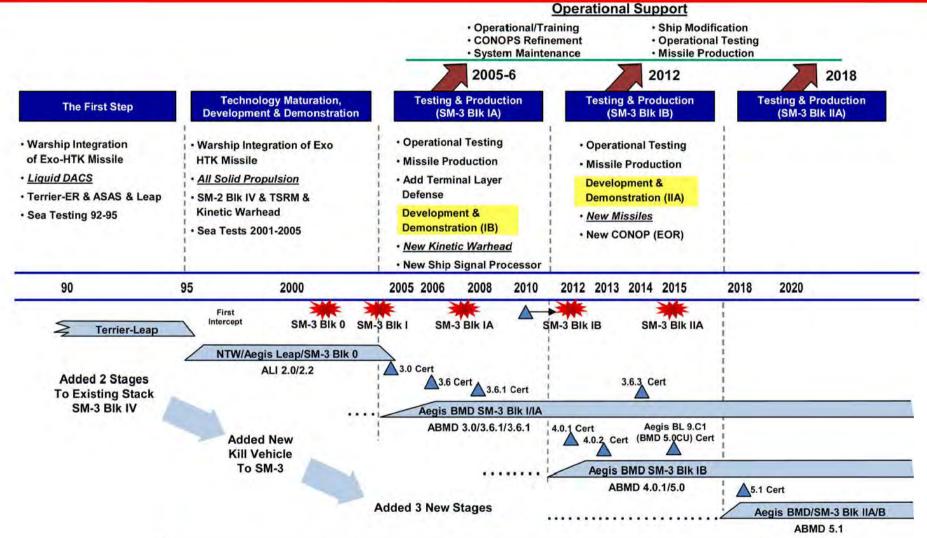


GMD Program Timeline

GBI Fleet Deployment History

CE-II

Non Intercept Test

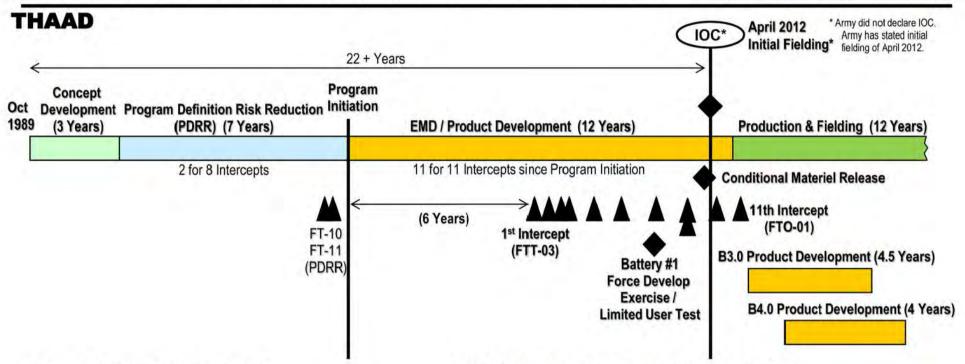

Ground-Based Midcourse Defense Fielding

GMD Initial Defensive Operations 200		Today's Capability	Future Capability	
Interceptor Fleet	· CE-I GBI	• 30 CE-I and CE-II GBIs	• 44 CE-I, CE-II & CE-II Block 1 GBIs (2017)	
Missile Fields	Ft Greely Alaska (FGA) Missile Field (MF) 1 – 6 silos Vandenberg AFB (VAFB) – 2 silos	• FGA MF 2 – 14 silos • FGA MF 3 – 20 silos • VAFB – 4 silos	• FGA MF 1 Upgrade – 6 silos • FGA MF 2 – 14 silos • FGA MF 3 – 20 silos • VAFB – 4 silos	
GMD Fire Control and Launch Support Systems	GMD Fire Control (GFC) Command Launch Equipment (CLE) Launch Support Equipment (LSE)	 GFC nodes at Colorado Springs (COS) for planning Fire Direction Centers (FDC) at FGA for execution Training centers at COS and FGA CLE at VAFB and FGA 	CLE / GFC Rearchitecture (2017) LSE Upgrade (2020)	
IFICS Data Terminals (IDTs)	Test Bed IDTs at FGA and VAFB	Operational and Test IDTs at FGA, VAFB, and Eareckson Air Station	Fort Drum, NY IDT (2015) Technical Refresh (2017)	
Ground Systems Software	Initial Capability	Fielded 6B.1.5 in 2009 – Enabled two TPY-2 radars	Discrimination Improvements for HD (2016)	
• Defense Support Program • Cobra Dane • UEWR Beale • Aegis SPY-1 Radar		 TPY-2 Radar Japan - 2006 SBX - 2008 Fylingdales UEWR - 2010 Thule UEWR - 2011 2nd TPY-2 Japan - 2014 (Dec) 	Clear UEWR (2016) Cape Cod UEWR (2017) LRDR (2020)	

Aegis BMD Development

- Historical Timeline -

Build a Little, Test a Little, Learn a Lot


Aegis BMD Flight Test Failures

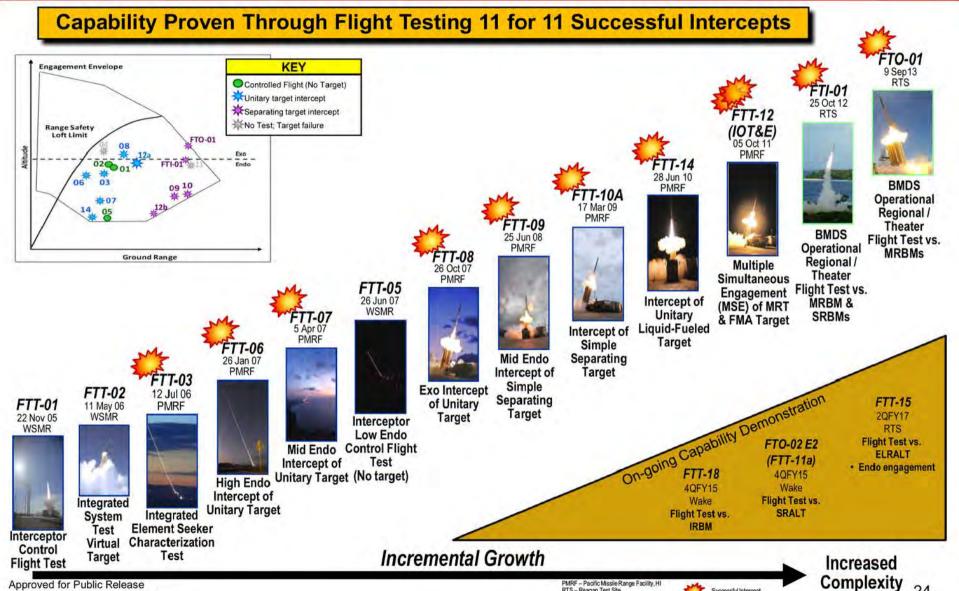
Flight Test	Date	Missile	Failure Description	Root Cause
Flight Mission 5 (FM 5)	JUN 2003	SM-3 Blk 0	SDACS Divert and Attitude Control Failure	Cracked ball in the Attitude Control Assembly causing loss of Kinetic Warhead control
Flight Test Standard Missile 11 (FTM-11)	DEC 2006	No SM-3 fired	Missile did not fire because of incorrect system setting aboard the Aegis cruiser	Threat engagability settings modified prior to target launch and the system did not achieve engagability requirements, therefore did not fire the SM-3
Pacific Blitz	NOV 2008	SM-3 Blk I	Infra-Red (IR) Seeker Failure	Initial Deployment Rounds (IDR) had been assembled by Engineering Staff with variable layouts and staking of the IR Cryogenic Cooling System. The cooling gas leaked out of the cryogenic gas bottle
Japanese FTM-2 (JFTM-2)	NOV 2008	SM-3 BIk IA	SDACS Divert and Attitude Control Assemblies (ACA) Failure	DACS Malfunction
FTM-16 Event 2	SEP 2011	SM-3 Blk IB	Third Stage Rocket Motor (TSRM) pulse Failure	TSRM had a burn through of the rocket motor case during pulse 2 burn and impinged on the high pressure TSRM Attitude Control System (ACS) causing a rupture of the gas bottle
Flight Test Intercept 01 (FTI-01)	OCT 2012	SM-3 Blk IA	Inertial Measurement Unit (IMU) Failure	IMU memory chip error

THAAD Development Program Summary

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Program Definition Risk Reduction

- Program Office Chartered 1992
- Critical Design Review 1993
- FT-1, FT-2, FT-3 Successful Non-Intercept missions (1995)
- FT-4 through FT-9 Failed to Intercept (1995-1999)
- FT-10 and FT-11 Successful Intercepts in June and August 1999 enabled a Milestone B decision in 2000


EMD / Product Development / Production Fielding

- Critical Design Review 2003
- First Manufacturing Contract 2006
- 1st/2nd Battery Activations 2008/2009
- Government Ground Testing (2yrs) 2008-2010
 - Safety, Mobility, Environments
- 1st Emergency Activation 2009
- Incremental Production Decisions 2010, 2012 & 2014
- Deployment to Guam 2013

14-MDA-7938 (13 August 2014)

THAAD Flight Test Incremental Growth

RTS - Reagan Test Site
WSMR - White Sands Missile Range, NM

Successful Intercept

GBI Evolution

EKV

CE-I

- Prototype Design
- "Hit-To-Kill" Demonstrated
- Fielded in Response to **Imminent Threat**

CE-II

- Obsolescence Upgrades
- Increased Processor Throughput
- Software Improvements
- Targeted Corrective Actions to Known Issues
- Minor Producibility Improvements

CE-II Block I

· Reliability Improvements: Inertial Measurement Unit Avionics **DACS Tanks DACS Thrusters** Pulse Code Modulator Encoder Communications Link Sub-system Harness Reshaping

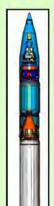
2004

2008

2016

2004

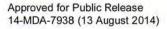
C1 Heritage (3 Stg / 2 Stg)


- 3 Stage Booster (Fielded)
- Vehicle design and hardware components based on legacy Space Launch vehicles: Pegasus, Taurus, and Minotaur
- Proven design successfully verified in all Flight Tests
- 2 Stage Heritage design also developed and successfully flight tested in BVT-1

2016

C2 Design Upgrade (3 Stg)

- 3 Stage design upgrade based on original FAU/OP Program
- Improves reliability, addresses H/W obsolescence, and reduces risks
- Avionics upgrades to Flight Controller, Booster Controllers, IMU, TVCs, Batteries, and Flight S/W
- Compliant with MIL-STD-1901A Ignition Safety
- Enhanced Natural Environments
- Non-Tactical Equipment also upgraded for Flight Test vehicles



2020

C3 Evolution (2 Stg)

- 2 Stage Booster combines the 2 Stg C1 design and the 3 Stg C2 Upgrades
- Improves reliability, addresses H/W obsolescence, and reduces risks
- Provides flexibility for maximizing coverage with various basing options

Discrimination Improvements For Homeland Defense

- Discrimination Function
 - Determines which objects from a threat missile launch are ruled as lethal or not lethal
- Importance of Discrimination
 - Insufficient interceptor inventory to engage all lethal objects and non-lethal decoys
 - Cost-effectiveness requires the right balance between number of interceptors and discrimination capability
- Discrimination Plan
 - Near Term (2014-2015)
 - Update threat definitions in existing system components
 - Make better use of current sensors
 - Mid Term (2017-2020)
 - Use available technology to improve sensors, kill weapons, and battle management/fire control capabilities needed to better address countermeasures
 - Far Term (2021+)
 - Field new advanced sensors and upgrade discrimination capabilities made available by the technology development investments we are making now

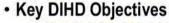
Robust Homeland Defense (2020-2025 Timeframe)

Increased Inventory (44 by 2017)

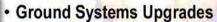
C3 Ground Based Interceptor

Redesigned EKV (REKV)

- Focus on mature technology and component reuse
- High priority on improved cost effectiveness, manufacturability, supportability, testability, and reliability


Notional

Two Stage Booster


- Producible, Reliable,
 Maintainable, Cost Effective
- Integrates with REKV
- Qualifies all hardware to Two Stage flight environments
- New HW and SW design to address differences in 3 vs 2 stage flyout

Ground Systems Upgrades / Discrimination Improvements for Homeland Defense (DIHD) (2016 and 2019)

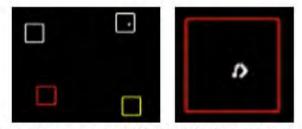
- Updated threat databases
- Use of data from all sources
- KV use of on-board and off-board data
- Improved discrimination
- Salvo logic

- GFC CLE Re-architecture PH 2 (LSE)
- On-Demand Comms
- GCN Modernization
- Technology Modernization
- LRDR Infrastructure

(1)Long Range Discriminating Radar (LRDR) (2020)

IFICS Data Terminal

Approved for Public Release 14-MDA-7938 (13 August 2014)



MDA has not tested against an ICBM

- FTG-06b involved a target missile that approached ICBM speeds and included countermeasures
- MDA test approach is to increase test complexity over time, using realistic scenarios
- Between now and 2024 there are 7 tests against ICBM targets with countermeasures – the first is planned for FY 2016

We have not demonstrated the capability to do target discrimination.

Exo-atmospheric Kill Vehicle Target Scene

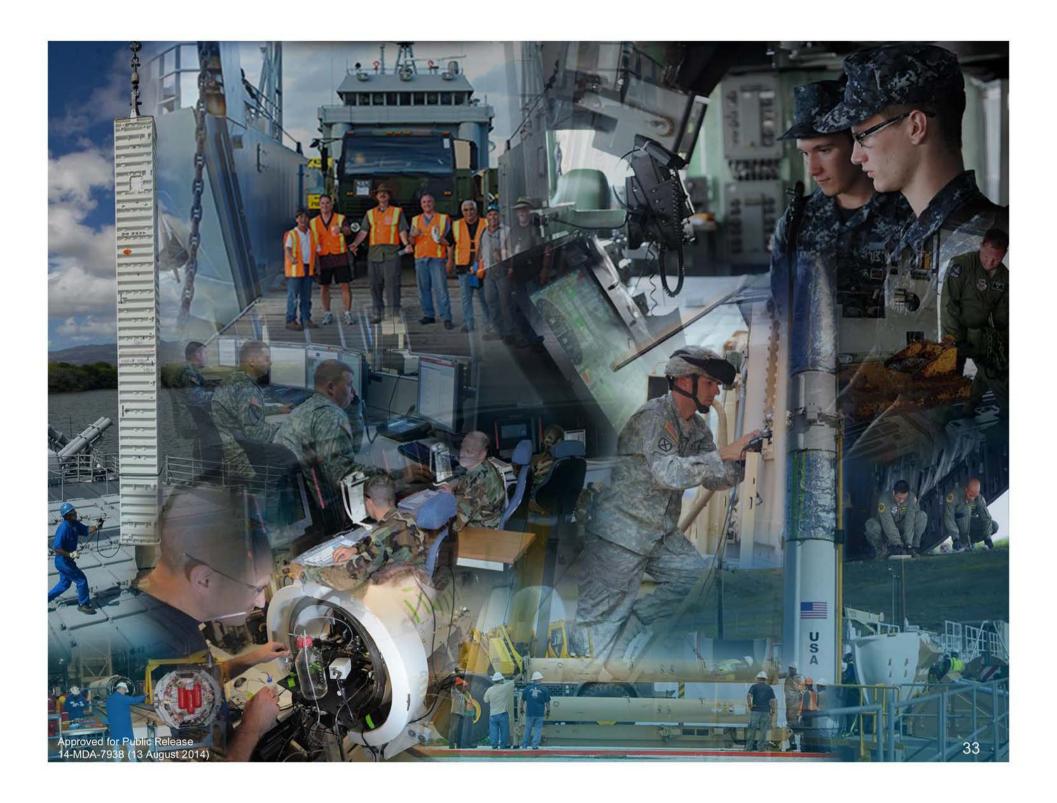
- FTG-06b demonstrated the ability to correctly discriminate and intercept the RV in the presence of operationally realistic countermeasures
- The failures to intercept in FTG-06a and FTG-07 were not associated with an inability to properly discriminate the most lethal object
- Early successful developmental intercept tests (1997 to 2002) included penetration aids (IFT-3, IFT-6, IFT-7, IFT-8, and IFT-9)

We can't do hit-to-kill

- MDA has repeatedly proven hit-to-kill technology is technically possible
- · Since 2001:

System	Number of Test Attempts	Number of Hits
GMD	14	8
Aegis BMD	31	25
THAAD	11	11
PAC-3	25	21
TOTAL	81	65

≈ 80%


The GMD tests are scripted for success

- Our test philosophy is to add complexity and reduce the number of controls we place on our flight tests of an element as it matures
- We limit variables in our tests to
 - Derive lessons learned in areas of greatest interest
 - Ensure we follow safety and environmental regulations

Summary

- The Nation has committed itself to the deployment and improvement of homeland defenses against a limited threat
 - We have come a long way since 2001 and Limited Defensive Operations in 2004
 - GMD element was a building block for the development of more robust capabilities in the future
 - Technical and fiscal challenges remain and are being addressed
- · Increasing test complexity is central to the BMDS test approach
- Future homeland defenses will feature improved discrimination and hit assessment capabilities and greater warfighter capacity
- Despite progress, there are still many misconceptions about the BMDS

